skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Watkins, Jessica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 10, 2026
  2. N/A (Ed.)
    Teachers can play critical roles in challenging or reinscribing dominant narratives about what counts as STEM, who is seen within STEM disciplines, and how these disciplines should be taught. However, teachers have often experienced STEM in limited ways in their own education and are thereby provided with few resources for re-imagining these disciplines. While teacher educators have designed learning environments that engage teachers in new forms of disciplinary activities, there have been few accounts that describe how teachers make connections between these experiences and dominant narratives that impact their own and their students’ learning. In this study, I report on the experiences of Alma, a white, working-class, female elementary teacher in an online graduate certificate program for K-12 engineering educators. Through her engagement in engineering design in the program, Alma appropriated—transformed and made her own—discourse of the engineering design process in ways that trouble some of the narratives that restrict her, her family, and her students in STEM and in school. Alma’s experiences emphasize the need to consider not just what teachers learn about disciplinary tools and discourses, but how they transform these for their own purposes and contexts. 
    more » « less
  3. N/A (Ed.)
    Background:Engineering's introduction into K–12 classrooms has been purported to support meaningful and inclusive learning environments. However, teachers must contend with dominant discourses embedded in US schooling that justify inequitable distributions of resources. Purpose:Drawing on Gee's notion of discourses, we examine how teachers incorporate language legitimizing socially and culturally constructed values and beliefs. In particular, we focus on the discourse of ability hierarchy—reflecting dominant values of sorting and ranking students based on perceived academic abilities—and the discourse of individual blame—reflecting dominant framings of educational problems as solely the responsibility of individual students or families. We aim to understand how these discourses surface in teachers' reasoning about teaching engineering. Method:We interviewed 15 teachers enrolled in an online graduate program in engineering education. Utilizing critical discourse analysis, we analyzed how teachers drew on discourses of blame and ability hierarchy when reasoning about problems of practice in engineering. Results:Teachers drew on engineering education concepts to reinforce dominant discourses (echoing specific language and preserving given roles) as well as to disrupt (utilizing different language or roles that [implicitly] challenge) dominant discourses. Importantly, teachers could also retool discourses of ability hierarchy (arguing for a more equitable distribution of resources but problematically preserving the values of ranking and sorting students). Conclusions:K–12 schooling's sociohistorical context can shape how teachers make sense of engineering in ways that implicate race, gender, disability, and language, suggesting a need to grapple with how discourses from schooling—and engineering culture—maintain marginalizing environments for students. 
    more » « less
  4. Blikstein, P; Van_Aalst, J; Kizito, R; Brennan, K (Ed.)
  5. Blikstein, P; Van_Aalst, J; Kizito, R; Brennan, K (Ed.)
  6. Abstract Preservice secondary science teachers often experience science learning in narrow and marginalizing ways in their science preparation. These experiences cause harm, particularly for preservice teachers of color. They also limit the disciplinary resources they can develop for later teaching science in ways that value and sustain their students' ways of knowing and being in the world. Our research explores possibilities for cultivating new spaces for preservice secondary science teachers to engage in science. In a content‐focused education course, we designed for and studied preservice teachers' engagement in expansive and connective sensemaking, incorporating heterogeneity, power, and historicity in pursuits of explanatory accounts of the natural world. In this article, we examined how this course design can support preservice teachers to attune to heterogeneity in ways of knowing in science and to connect to identity and historicity in scientific sensemaking. Our analysis suggests that students' final projects reflected attunements to diverse knowing, communicating, and relating in science and deep connections with their identities and future‐making, yet had fewer connections to sociohistorical narratives and structures. We developed illustrative case studies of four student projects, highlighting the personal, social, and political possibilities of creating space for future educators to imagine more expansive and connective forms of science. This study contributes a novel model for preservice science teacher education to support teacher learning to value and sustain their students' ways of knowing and being in the world. 
    more » « less
  7. Participating in discussions of classroom video can support teachers to attend to student thinking. Central to the success of these discussions is how teachers interpret the activity they are engaged in—how teachers frame what they are doing. In asynchronous online environments, negotiating framing poses challenges, given that interactions are not in real time and often require written text. We present findings from an online course designed to support teachers to frame video discussions as making sense of student thinking. In an engineering pedagogy course designed to emphasize responsiveness to students’ thinking, we documented shifts in teachers’ framing, with teachers more frequently making sense of, rather than evaluating, student thinking later in the course. These findings show that it is possible to design an asynchronous online course to productively engage teachers in video discussions and inform theory development in online teacher education. 
    more » « less
  8. As K-12 engineering education becomes more ubiquitous in the U.S, increased attention has been paid to preparing the heterogeneous group of in-service teachers who have taken on the challenge of teaching engineering. Standards have emerged for professional development along with research on teacher learning in engineering that call for teachers to facilitate and support engineering learning environments. Given that many teachers may not have experienced engineering practice calls have been made to engage teaches K-12 teachers in the “doing” of engineering as part of their preparation. However, there is a need for research studying more specific nature of the “doing” and the instructional implications for engaging teachers in “doing” engineering. In general, to date, limited time and constrained resources necessitate that many professional development programs for K-12 teachers to engage participants in the same engineering activities they will enact with their students. While this approach supports teachers’ familiarity with curriculum and ability to anticipate students’ ideas, there is reason to believe that these experiences may not be authentic enough to support teachers in developing a rich understanding of the “doing” of engineering. K-12 teachers are often familiar with the materials and curricular solutions, given their experiences as adults, which means that engaging in the same tasks as their students may not be challenging enough to develop their understandings about engineering. This can then be consequential for their pedagogy: In our prior work, we found that teachers’ linear conceptions of the engineering design process can limit them from recognizing and supporting student engagement in productive design practices. Research on the development of engineering design practices with adults in undergraduate and professional engineering settings has shown significant differences in how adults approach and understand problems. Therefore, we conjectured that engaging teachers in more rigorous engineering challenges designed for adult engineering novices would more readily support their developing rich understandings of the ways in which professional engineers move through the design process. We term this approach meaningful engineering for teachers, and it is informed by work in science education that highlights the importance of learning environments creating a need for learners to develop and engage in disciplinary practices. We explored this approach to teachers’ professional learning experiences in doing engineering in an online graduate program for in-service teachers in engineering education at Tufts University entitled the Teacher Engineering Education Program (teep.tufts.edu). In this exploratory study, we asked: 1. How did teachers respond to engaging in meaningful engineering for teachers in the TEEP program? 2. What did teachers identify as important things they learned about engineering content and pedagogy? This paper focuses on one theme that emerged from teachers’ reflections. Our analysis found that teachers reported that meaningful engineering supported their development of epistemic empathy (“the act of understanding and appreciating someone's cognitive and emotional experience within an epistemic activity”) as a result of their own affective experiences in doing engineering that required significant iteration as well as using novel robotic materials. We consider how epistemic empathy may be an important aspect of teacher learning in K-12 engineering education and the potential implications for designing engineering teacher education. 
    more » « less
  9. N/A (Ed.)
    This work-in-progress papers shares the results of the qualitative analysis of the way in which eleven elementary teachers’ understanding and stance toward engineering design changed as a result of engaging in adult-level engineering design projects. Identified themes showed that many teachers had more expansive conceptions of the engineering design process models and steps and that these understanding had connections to their pedagogical thinking about engineering with children. Implications of these findings and themes for teacher professional development standards, professional development design, and interactions between content knowledge and pedagogical knowledge are discussed. 
    more » « less